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Abstract A cluster hopping mechanism for transpdrt in two-component mdm whvorks below 
pc is proposed and shown to account for observed wnductivity mponents. Key s!n~ctures 
forming paths of least resistance ak identified. Anovel, computationally efficient method for 
determining exponents ~ s u l t s .  

1. Introduction 

Consider a two-component random resistor network made of elements ‘a’ and ‘b’ with 
aa >> U,,. In what follows let ub,/u8 = (Y and U, = 1. When g = 0, one has a standard 
percolation problem in which the network is conducting when the concentration p of type- 
‘a’ elements exceeds a critical~value, pc. Below pc the network is insulating. One has, for 
the general case, U = U ( A p ,  a) where Ap = p - pc. This problem has received much 
attention in the past. It is known that the parameter space near pc  and for small a separates 
into three regions characterized by different asymptotic forms for the conductivity: 

P ’ Pc IApI > (YI/ (~+~! U = IApI‘ 
P = P c  IAppI < (Y~/(*+‘) a =au 
P -= Pc IApI > U = alApl-‘. 

The critical behaviour of these  random^ resistor networks was first discussed by Efros 
and Shklovskii (1976) and Straley (1976). They independently derived the forms for the 
asymptotic conductivities as well as a relationship between the exponents: U = t / ( s  + t). 
For two-dimensional sqcare bond lattices one expects s = t and U = (Straley 1977). 
W i l e  various conjectures have been made, a relationship between these exponents and the 
geometric exponents of percolation theory has not yet been established. 

This problem is isomorphic to that of diffusion in a two-component medium in which 
the diffusant has~different mobilities.on the two types of sites. The diffusion constant is 
equivalent to the conductivity by an Einstein relation. Such a system might be used to imitate 
transport in random media with intramolecular motion: The diffusing particle moves freely 
on empty sites (type ‘a’). Occasionally an occupied site (type ‘b’) will become temporarily 
vacant due to intramolecular rotation. This allows steps to be taken on us~ually occupied 
sites. The transport is diffusive above and below pe 

In terms of the diffusion problem one may understand the three regimes as arising from 
a competition between~time scales, In general, D =. (r2(r)) /r ,  where r is the time scale 
over which the trajectory looks like a random walk. For conventional percolation problems, 
r = t P -  - Ap-’/* with l / x  = ~ I / ( t  + 2u - p)  in terms of the usual percolation exponents. 
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This is the time for a particle to travel a distance :' = ApP-"+flf2. For times longer than 5, 
the behaviour is diffusive when p > pc. For p c pc and t >> rp the average displacement 
approaches a constant value e' which is the average size of the finite clusters. When a > 0, 
diffusion is possible for p < pc  because, travel on type-'b' sites is permitted. Another time 
scale then enters into the problem. re is the time scale over which the trajectory looks like 
a random walk through transport that involves travel on some type-'b' sites. 

Consider the case p c pc  where type-'a' clusters are finite. In the language of the 
conductivity problem, one would expect the paths of least resistance to dominate the 
asymptotic behaviour. Such a path would involve travel on the finite type-'a' clusters 
and then a cluster hop involving travel on as few type-'b' sites as possible. Consider finite 
cluster surface sites that are only one 'b' site away form another finite cluster. These 
will be referred to as 'hotspots' in what follows. Let the time required to travel across a 
portion of a finite cluster from one hotspot to another be denoted by ?a. It is proposed 
that ru is equal to (l/cr)rca. (I/a) may be thought of as the number of attempted moves 
onto a type-%' site before such a move is accepted. In this paper, ZCH will be measured 
as a function of IApI. The results will then be used to calculate the transport coefficient 
D = (r2(ra))/ra = C ~ I A ~ I - ~ .  The values of s obtained will be compared with values 
obtained by other methods. Agreement supports the hypothesis that the relevant time scale 
for diffusion in the region where p ( p ,  and IApV+')ff is r, = (I/U)?CH. 

2. Dimension of hotspots at p ,  

Although not central to the results of this paper, I also present results for the dimension 
of the hotspots at pc. The number of these sites on the incipient infinite cluster at pc 
was counted on square lattices of lengths 10 to 100. A plot of against InL gave 
dHs = 1.75ct.02. The total number of sites on the incipient infinte cluster was also measured 
as a function of L for comparison. This gave a value of 1.86f.03 for the dimension of the 
incipient infinite cluster at pc.  Data was obtained using 200 realizations at each value of 
L. It appears that the hotspots scale as the surface. Measurements of the incipient infinite 
cluster surface dimension give ds = 1.751 i .002 (Ziff 1986). 

3. T ~ H  Measurement 

To measure rCH for p < pc an ant is put on a randomly chosen type-'a' site. A neighbouring 
site is chosen at random. If the site is type-'a', the move is accepted. When the ant hits a 
hotspot, the time is recorded and a new walk is started. If the initial spot was a hotspot, the 
time is recorded as zero. 7CH was measured on two-dimensional square lattices of length 
L = 100, 200, and 400 for values of lap(  ranging from 0.02 to 0.12. Thirty realizations 
of the lattice were used at each p value for L = 100 and L = 200. For L = 400 only 
IO realizations were used. The time-consuming part of this investigation is the cluster 
identification. Consequently it is desirable to have many walks on a given realization while 
avoiding redundancy. Near pc  = 0.59725, L2/2 walks per realization allows nearly each 
occupied site to be the starting point for a walk without oversampling. III all cases, L2/2 
walks were performed on each realization. 

Inr, was plotted against In IApl to give slopes of -1.159ct0.044, -1.262f0.033 and 
-1.266 f 0.030 for the L = 100, 200, and 400 lattices respectively. The range of lApl 
used here was 0.04 to 0.12. Figure 1 shows a plot of l n s a  versus InIApI for L = 400. 
The distance traveled in ?CH was also measured It was found that lk FX rm 0.45 . 
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In three dimensions a cubic lattice of length L = 30 was used to determine rm. 
With 10 realizations and L2/3 walks per realization, pc was taken to be 0.3115. 

r c H  K lApl-o'63*o'05. 

F r r e  1. A plot of In r~ versus In IApI for L = 400. 

4. Finite-size scaling 

rCH is finite above, below, and at pc. Consequently one expects a deviation from the power- 
law behaviour rcH 0: Ap-4 near pc. The deviation from linearity observed in the In-ln plots 
of figure 1 is due to some combination of finite size effects and this crossover. To separate 
out these effects, a finitesize scaling analysis was perfm"md for the r c H  measurement in 
two dimensions. This requires measuring r a  at pc for various values of L. Assume the 
scaling form , 

r c H  = A P f  ( f / L )  = A F q f  (hP-"/L)  

where the asymptotic behaviour of r a  is given by rm 0: Ap-4 and e is the percolation 
correlation length. It is clear that r a  0: L4'" at pc where Ap = 0. 

The method used for measuring r a  was identical to that used in section 3 except that 
percolating samples had to be identified and removed. At pc samples are generated that 
are both percolating and non-percolating. In order to examine the behaviour of rm as one 
approaches pc from below one must weed out the percolating realizations from the set over 
which data is collected. 

The value used for pc was 0.59275. r a  was measured for 22 L values from L = 6 
to L = 100. For L = 6 to L = 22, 1OOOO realizations were generated. For L = 25 to 
L = 100, 1000 realizations were generated. Error bars on the tCH averages were around 
f0.05 for L = 6 to L = 22 and somewhat larger for L z 22. 

For L t 20 them is a noticeable deviation from linearity in the In rCH versus In L plot 
(see figure 2). Using values between L = 6 and L = 17 one obtains a slope of 0.948f0.004. 
This gives TCH cx Ap-'.264*0.w5. 
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Figure 2. A plot of l n r ~  versus In L at p = pE.  

5. Calculation of D 

In this section, the results of sections 3 and 4 are used to calculate the transport coefficient 
for ru > zp and p c pc.  When r, > zp. the distance traveled in the time tu is limited to e' the average size of finite clusters. This gives 

The initial intention was to obtain values of F appropriate to the lattice sizes used 
in section 3 for determining rCH. It was found that rm suffered much less from finite- 
size effects than did e'. Figure 3(u) shows a plot of I n w ~  versus InIApI for the three 
lattice sizes. One can see that the L = 200 and L = 400 data points agree fairly well for 
IApI 2 0.03. Figure 3(b) shows a similar plot for the F data. In light of this, t' = Ap-'+f@, 
with v - f p  equal to the exact value that was used in the calculation of D .  With 
r, = (l/a)lApl-'.266i0.033, one obtains D = alAppl-1.26zio.033. Using the t C H  value from 
the finite-size scaling analysis in two dimensions one obtains D = l ~ l A p p l - ' ~ * ' ' . ~ ~ ~ .  

This value for the exponent s is in good agreement with series expansion results (Adler 
er al 1990) and random walk methods (Adler et al 1984, Bunde et a1 1984). It falls 
outside of the very precise values obtained via finite-size scaling/trarisfer matrix methods 
by Normand and Hemnann (1988). 

In three dimensions, using 5' = (Ap[-o.68 and ze = (l/a)lAppl-o.63*o.05 from section 3 
one has D = a(Apl-o"3*+0". This value for the exponents is likely to be on the high side 
due to the small lattice size used in determining tu. It is, however, in agreement with other 
determinations (Normand and Hemann 1990). 

6. Discussion 

Based on the results for the transport coefficients, it appears that the proposed mechanism 
correctly describes the asymptotic transport observed below pc. In addition, the role of 
the hotspots in forming the paths of least resistance is correctly identified. Also verified is 
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Figure 3. (a) A plot of In TCH versus In IApl for various values of L; (b) a similar plot of lnr 
versus InlApI. 

the identification of the a-dependent time scale relevant to this problem as t, = (l/a)sm 
where t c ~  is the time between visits to hotspots on the same cluster. According to the 
theory presented by Efros and Shklovskii (1976) and S t n l e y  (1976), the region in the 
parameter space (1Apl.a) for which D =nlAppl-’ is given by IApI This may 
be rewritten as IApJ-“+z”-81 << (l/a)lAp\s-z”+8. In terms of time scales, this is tp <( b 
where (I/a)lAp~v-z”+fi is identified as T,, in agreement with the results presented here. 

scales as ( l /a) lApl-”+if l ,  then D = ~IAp( -”+f i /~ ,  which is the Alexander-orbach 
conjecture (1982). The results obtained here do not rule this out 

An 
unoptimized code was run on the Cray XMP. The running times pe1 realization were 
approximately 3.2min, 13.4s. and 1.20s for L2/2 walks on the L = 400, L = 200 and 
L = 100 lattices, respectively. The time~required for two-dimensional analysis is 

If 

A very modest amount of computer time was used to obtain these results. 

N R  [aL3”’ + bL2] 

where a = 1.145 x and N R  i s  the number of realizations of the 
L x L lattice. The number of walks per L value for each realization is taken to be L2/2. 

This method, combined with finite-size scaling, provides a very computationally efficient 
way of determining the conductivity exponent s. Data for a finite-size scaling analysis, 
obtained by Lobb and Frank (1984). was reported to require under two hours on an IBM 
3081. A finitesize scaling determination of s by the method presented here, using the same 
values of L with comparable error, would take about 600s on a Cray XMF’. A finite-size 
scaling study comparable in extent to that presented by Hemnann er d (1984) would require 
=s 70 s. 

The theory of E h s ,  Shklovskii and Straley predicts that D = a[Ap(-s  will be valid 
for IApJ’+‘ >> U. It should be possible to satisfy this criterion for any small Ap by suitable 
choice of a. Two possibilities may explain the deviation from linearity observed in the 
In r c ~  plots. One possibility is that r (5,) also changes its dependence on Ap and L in 
this region in such a way as to preserve the form of D. Another is that one is already 
in the crossover region where the transport phenomena change. Future plans include an 
invesligation of the distance traveled before exit from a cluster as a function of Ap and L 

b = 1.105 x 
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investigation of the distance traveled before exit from a cluster as a function of A p  and L 
for some fixed, small a. Also of interest might be a thorough investigation of the hotspot 
dimensionality as a function of Ap for p -= pc.  In addition, I believe that a method similar 
to that employed here for the determination of s may be used to determine the conductivity 
exponent at p = pe where D = a’. 
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